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Summaff 

We review the governing equations of fluid dynamics in general co-ordinates, and present forms particularly 
suitable for efficient numerical solution. Methods are given, both for compressible and incompressible flow, of 
eliminating explicit use of the connection coefficients and transformation matrix elements from the computa- 
tions. Special problems associated with spacially varying viscosity and with eddy-viscosity turbulence models are 
also discussed. 

I. Introduction 

Co-ordinate transformation methods have a long and honourable history of service to 
computational fluid dynamics. Their use has usually been restricted to two-dimensional 
calculations for a number of sound reasons. 

First, a three-dimensional geometry will give rise to a three-dimensional flow, which is 
expensive to compute compared to a flow with one translationally symmetric dimension. 
If co-ordinate transformations are also introduced, the computational expense frequently 
becomes prohibitive. Second, an orthogonal transformation may always be found to map 
a two-dimensional geometry onto a simple region such as a rectangle, but in general 
orthogonal surface-following co-ordinate systems cannot be found for three-dimensional 
geometries; a general co-ordinate transformation must be used instead. 

It is the purpose of this paper to consider the use of general co-ordinate transforma- 
tions, and ways of reducing the penalties incurred by attempting to solve the generalised 
Navier-Stokes equations in two or three dimensions. We shall not consider here the 
question of how the general co-ordinate transformation is initially defined [1]; only how 
the resulting equations may be efficiently solved numerically. The equations are well 
known [2], but have not found extensive use. An alternative form of the momentum 
equation suggested by Peyret and Viviand [3] is sometimes more computationally conveni- 
ent, and is discussed in Section 4. 

The difficulties of numerical calculation, particularly in the three-dimensional case, are 
formidable. Co-ordinate transformations are used in order to simplify the form of 
boundary condition: in a complex geometry the boundary conditions have a correspond- 
ingly complex form, but by introducing a surface-following co-ordinate system the 
boundary conditions become extremely simple [4] (for instance some velocity or potential 
may be fixed on a surface on which one of the transformed co-ordinates is also fixed). The 
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price paid for this simplification is that the equations become more complicated, since 
they now involve geometry-dependent terms arising from the transformation. In the case 
of a general co-ordinate transformation, the increase in the complexity of the equation is 
so great that the price has often been considered too high in comparison with the benefits. 
It is for this reason that general co-ordinate transformation methods have been neglected 
in favour of regular meshes, finite elements, or orthogonal co-ordinate systems. 

The additional complexity of the generalised equations arises from two easily identified 
sources. The first is the metric tensor of the transformation; the second is the affine 
connection coefficients. Both are defined in Appendix B. For a three-dimensional trans- 
formation, the metric has six independent components at each point in space, while the 
connection (which is used for calculating derivatives) has eighteen independent compo- 
nents. The alternative form of the momentum equations [3] does not contain the 
connection coefficients but instead involves the transformation matrices, with nine inde- 
pendent components. 

It is easy to see that the amount of computation can become prohibitive if an attempt is 
made to perform a practical calculation on a three-dimensional mesh of significant size. 
The geometric quantities (the metric and the connection coefficients or transformation 
matrices) must either be recomputed each time they are needed (each iteration, or each 
time step), or be computed once and stored. The storage of fifteen or twenty-four 
independent components for each mesh point is likely to be too high a price to pay for the 
benefits a co-ordinate transformation yields. Even if this problem can be solved satisfacto- 
rily, it is evident that the geometric objects are used at several stages in any solution, and 
impose a significant extra computational load. Storage may be saved by recomputing the 
metric components from the transformation matrices, or the connection coefficients from 
the metric, but this requires additional processor time. 

In Sections 5 to 8 we attempt t ° mitigate some of these penalties by developing forms 
of the generalised Navier-Stokes equations in which neither the connection coefficients 
nor the transformation matrix elements appear explicitly. This simultaneously simplifies 
the computations needed to solve the equations and reduces by a factor of three or four 
the storage (or recomputation) needed for the geometric objects, since only the compo- 
nents of the metric are used. In Sections 10 and 11 attention is given to cases in which the 
connection coefficients cannot be completely eliminated. 

2. The Cartesian equations 

The reader is assumed to be familiar with three-dimensional Cartesian tensors and the 
notations associated with them [2,5]. The Einstein summation convention, stating that 
indices repeated in any term are summed from 1 to 3, is used throughout. 

The equations that form the basis for our discussions are as follows: 

O,p + 3i(Ov,) = O, (1) 

p D v i / D t  = F,. + afrij. (2) 

The first of these is the equation of continuity, representing conservation of mass. The 
second gives the conservation of momentum. D / D t  is the so-called material derivative, 



related to the partial derivative at a fixed point by 

D / D t  = ~, + viol. 
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(3) 

The symbols are defined in Appendix A. These equations are for a Newtonian fluid. The 
total stress is split into a pressure and a residual stress term: 

T,j = o~j - p ~ j  (4) 

with the pressure usually assumed to be given by 

p = - % / 3 .  (5) 

A Newtonian fluid supports a simple relationship between oij, the strain rate 

sij=½(O, vj+~jv,)  (6) 

and the dilatation 

0 = 3,0,. (7) 

This relationship is 

ois = 2/~s~j + ?~06~j. (8) 

If the definition (5) of pressure is assumed, (4), (6), (7) and (8) together imply that 

= - 2/~/3. (9a) 

This relation is closely followed by real fluids, though in general 

~, < - 2tt/3. (9b) 

The momentum equation may therefore be written: 

p (Otv i -b vj~jvi ) .~- Fii -[- ~j( -P~i j  q- 2t~s~j + XO6~j ). (10) 

With these equations we take a typical form for a temperature equation: 

p c p D T / D t  = k ~ 2 T -  pO + 2t~s~jsij + X0 2. (11) 

This will serve as a paradigm of all equations governing the transport of scalar quantities 
in the flow, and is not intended to be the most general or the most useful form of the 
energy conservation equation. The set of equations is completed by a constitutive equation 
relating density, pressure and temperature: 

p = p ( p ,  T) .  (12) 
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3. The general equations 

Properly formulated tensor equations are valid in any co-ordinate system in a Riemannian 
space. The conservation equations (9), (10)7 (11) and (12) given above must therefore be 
special (Cartesian) cases of generalised conservation laws. 

There are two major differences. First, the partial derivatives used in the Cartesian 
equations are a special case of the covariant derivative, which is written using a comma 
notation thus: 

si- i = ½(uid + u-i,i ).  (13) 

Covariant differentation is defined in Appendix B. 
Second, co-ordinate differentials dx i and scalar gradients such as O~p transform 

differently under co-ordinate transformations. The two types of description are dis- 
tinguished by the terms "contravariant" and "covariant", and by super- and subscript 
indices respectively, as shown above. For further details of the notation and methods of 
generalised tensors, the reader is referred to Appendix B, to a previous publication [6] or 
to any standard text [2,5]. The above comments, however, are sufficient to justify the 
following form of the generalised equations: 

o,p+(pu'),i=o, 
p(O,u'+u%) 

= F i - ( g i j p ) , j  + (2/xsU),-i + ( X O g U ) d ,  

0 = Uli , 

' - -  ! [  , , ik, , j  ~,Jkui $1J--21,15 Vt,k "+ iS, ,k ]~ 

pCp(atr  + u-iT-i) k g U T  u u' , = - P ,i + 2t~s Usi- i + XO 2, 

p = p ( p ,  T). 

(14) 

(15a) 

(15b) 

(15c) 

(16) 

(17) 

The tensor gij  appearing in Eqns. (15) and (16) is the metric, defined in Appendix B. The 
reader should note that the comma notation for the covariant derivative makes the 
equations appear deceptively clear and simple. It is important to remember that the 
covariant derivative of any vector or tensor involves terms containing the connection 
coefficients (Appendix B). To prevent any misunderstanding, the full form of the 
momentum equation (15) is given below, with all the covariant derivatives expanded: 

.o,u, + .uJ( y + r; uk) 

= F i - gi-ip,j + [)j(2#s'-i) + 2~I']ks kj + 21~Fj~s *k + gUOj(X8) ,  

O = ~i u* + F/~u k, 

'' , . , ikpj  ,,t + g j k ~ k u i  + g J k F ~ l u l ) .  s "  = ½ ( # * O k u - i  + ~ .kt- 

(18a) 

(lSb) 

(18¢) 
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These equations should be sufficient to convince the reader that computations using 
general co-ordinates can be onerous if approached in the wrong way. 

In Sections 5 to 8 we shall consider each of the equations (14) to (17) in turn, in order 
to determine the best form for its use in computation. 

4. The semi-Cartesian form 

The form of the Navier-Stokes equations given in the previous section is one that comes 
naturally from any analysis imposing the conservation of scalar mass and energy, and the 
contravariant components of the vector momentum. It is equivalent to that given by Aris 
[2], and rederived by Gal-Chen and Somerville [7]. The latter authors found a computa- 
tionally more efficient form of the equations since they went on to use them in a practical 
calculation [8]. 

In 1975 Peyret and Viviand [3] suggested that "a general conservative form of the 
Navier-Stokes equations can be obained by making an arbitrary time-dependent transfor- 
mation of co-ordinates on the scalar equations based on the cartesian components of 
velocity and momentum". They gave a two-dimensional version of such equations. 

Roscoe [15] independently derived one form of these equations, and gave a three-di- 
mensional version in a particularly clear and concise notation. The equations were used 
for a practical calculation, though Roscoe chose to restrict the study to orthogonal 
co-ordinates, constant viscosity, and steady flow. 

This form of the equations arises from the observation that the components of 
momentum are physically conserved, regardless of which co-ordinate basis is used to 
project the components. Since the Cartesian components are conserved and are related in 
a known way through the transformation matrices to the convariant components that 
occur in the continuity equation, the conservation equation for a scalar quantity may be 
applied to each Cartesian component separately. The resulting form of the momentum 
equation is 

o D v i / D t =  F i - ~)p/Oy i +( gJtl~Vi,j),t +()tO),/. (19) 

Using Eqn. (B5) (Appendix B) to write the Cartesian components in terms of the 
covariant components, we obtain 

k l , J l  ,t (20) 

The matrix elements c~ are given by (B2). Since the viscous term has become a simple 
divergence (the Cartesian velocity component is essentially a scalar in this context), Eqn. 
(B18) may be used to replace the covariant derivative by  an appropriate partial derivative: 

= F, -  iOp/Ox J + [ J" 

=a(XO)/Ox'.  (21) 
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The equation used by Roscoe was a particular case of this equation, in conjunction with 
the form of the continuity equation given in the next section. 

The semi-Cartesian form (our term) for the momentum equation has the advantage of 
eliminating the connection coefficients, at the expense of introducing the matrix elements 

i This represents a significant reduction in the computational complexity of the C k • 
equations. The form is convenient for finite difference or finite element computations, 
though not for spectral methods. It is not clear whether a semi-Cartesian form of the 
energy transport equation can be formulated if the viscous dissipation term is included. 

The following four sections are an attempt to eliminate the use of both the connection 
coefficients and the transformation elements from the full set of equations (14) to (17). 

5. Continuity 

Equation (14) may be expanded as follows: 

~tP "~- u i~ ip  "~- PUli = O. 

We use the relationship (B18) to rewrite: 

uf, = ~,u' + r~u' = 0,u' + ( J - ' 0 i J ) u i = j - ' ~ i ( j u i ) .  

This allows the continuity equation 
coefficients: 

(22) 

(23) 

to be written without involving the connection 

atp + u'b,p + pJ-aO,( Jui) = 0. (24) 

The dilatation may also be computed without involving the connection, by using the 
original equation: 

0 = Uli = _ p - l ~ t p  _ p - l u i ~ i p .  (25) 

In incompressible flow, Eqn. (24) reduces to a particularly simple and well known 
form: 

O,(Ju i) = O. (26) 

6. Conservation of momentum 

As we have seen, the fully expanded form of the momentum equations is not simple. In 
order to make computations practical, we first note that the vorticity may be computed 
without involving the connection coefficients, 

(27) 

which is clearly true of any skew-symmetric tensor that is the "curl" of a vector. 
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This convenient property of the vorticity suggests that the rotation form of the general 
Navier-Stokes equation may be simpler than other forms. Defining a total pressure by 

P = p / p +  u 'uJ2  (28) 

and noting that 

uJul j = uJg,k ( uk.j _ uj.k ) + ½gik( uJuj ).k (29) 

we can rewrite (15a) as 

O, ui= F i / p - g i J a j P  + 2uJw~ + 2p-l( / ,s iJ)4 + p-l(XOg°) , j  (30) 

where the vorticity components oa~ are defined by (27) and (Bll). 
The major source of complexity in the equations remains in the viscous terms. We first 

note that 

(#s" ) . j  = s % ~  + , s ( j  (31) 

and then use the continuity equation (25) to rewrite the second term: 

-' .. t o J k . . '  _ = _  

( 3 2 )  

Since the first term in (32) is a simple divergence, we may again use Eqn. (B18) to 
eliminate one occurrence of the connection coefficients: 

~o jiJ = OjoaiJ + Fj~oa,k + i.]kOakj= j- lOj(  joaij) + rjk~Ok L (33) 

However. since the vorticity is a skew-symmetric tensor, while the connection Fjk is 
symmetric in its lower two indices, the term on the right of (33) also vanishes: 

wlJ= J-lO)( J~oiJ). (34) 

Substituting (34), (32) and (31) into (30), the momentum equations may be written in a 
form which only involves the connection in the computation of s in the last term: 

Ot ui = p- lFi  _ gijOjp + 2uJoa} + 

-2vJ-li)j(j~oiJ)+p-'gij[()k + 2#)a,o + eajx] + 20-'s%#. (35) 

The terms involving 0 would be computed using (7), so that the connection is not involved. 
In incompressible flow, the above equations reduce further to 

OtU i= p - l r i -  giJajP + 2uJwj - 2vJ-'Oj( Joa i~) + 2p-lsijOjt*. (36) 

In particular cases in which the viscosity may be assumed to be constant, the last term 
on the right-hand side of (35) or (36) is absent. These are forms of the momentum 
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equations in which the connection coefficients do not appear at all. In conjunction with 
the continuity equation (24) or (26), and the temperature and constitutive equations to be 
discussed below, they represent a very efficient approach to the solution of the generalised 
equations, in the case where the spacial variation of the viscosity is negligible. The best 
approach in cases where there are significant viscosity gradients will be discussed in 
Section 10. 

7. Driving forces 

The driving force F i on the right-hand side of the momentum equation may take a 
number of forms. The forces most commonly encountered are imposed pressure gradients 
or buoyancy forces. In many types of calculation where inflow and outflow boundary 
conditions are imposed, a mean pressure gradient will not be explicitly inserted into the 
calculation in this fashion, but rather will be a calculated result. 

If explicit vector driving forces are to be included in a computation, their contravariant 
components in the curvilinear co-ordinate system may be computed in advance, using the 
equation 

F i= giJc;Op/Oyk (37) 

for a typical pressure gradient, and 

Fi= (p -  po)ci3g (38) 

for a buoyancy force acting in the y3 direction. 
This represents a more efficient approach than storing the elements of c/, but still 

requires the storage of two or three additional real arrays, the contravariant components 
of the driving force at each mesh point. We consider this to be a significant penalty 
associated with explicit vector driving force terms, since otherwise only nineteen such 
arrays are needed even for a full three-dimensional direct simulation in a three-dimen- 
sional geometry [9]. To reduce the storage required, we note that a mean scalar pressure 
may be stored for each mesh point, and its covariant derivative recomputed quite simply 
as required; this requires only one array instead of two or three. A similar trick can be 
used for buoyancy forces. These considerations are of particular importance for three-di- 
mensional transformations. 

8. Scalar equations 

We now turn to the energy conservation equation (11), and the constitutive equation (12). 
Since the latter is a pure scalar relationship, it has the same form in any co-ordinate 
system, and we need consider it no further. 

The energy equation is also scalar, but involves vector or tensor quantities in the 
computation of several terms. The Laplacian term is a divergence and may be treated in a 
now familiar manner: 

giJr ,g= gij(SiT),j= J-'Sj( jgijaiT ). (39) 
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The terms involving 0 may also be calculated using (7), as in the momentum equations. 
The viscous dissipation 2t~siJsij can only be found by computing the strain rate using 

Eqn. (6), and involves the connection coefficients. In a wide class of flows this term may 
be neglected, however; it is only important in rather low Reynolds-number flows. For an 
incompressible flow in which the dissipation makes a negligible contribution to the total 
energy budget, the transport equation reduces to 

pceb, T= -pcpuJajT + kJ-  a0j( JgiSOiT ) . (40) 

This equation is typical of scalar transport equations in general, which can usually be 
reduced to some form which excludes the explicit use of the connection coefficients. 

9. Summary of compact forms 

The foregoing sections lead us to sets of equations for both compressible and incompressi- 
ble flow which do not involve the connection coefficients in any explicit computations. 
The conditions under which these compact forms exist are as follows: 

(a) the viscosity (or effective viscosity) present in the momentum equations must be 
spacially unvarying; 

(b) if an energy equation is part of the system, the viscous dissipation term must be 
negligible. 

Provided these two conditions hold, considerable savings may be effected, either of 
computation time or of storage space, in iterative solutions or time-stepping simulations of 
the generalised Navier-Stokes equations using primitive variables. For a three-dimensional 
geometry, the six independent covariant components of the metric gij are computed 
initially, and stored for each point of the mesh. For a two-dimensional geometry there are 
three independent components of the metric. The components of the affine connection are 
not needed; neither are the transformation matrices or the Cartesian positions of the mesh 
points, except for transforming information back to Cartesian co-ordinates for output. 

The other quantities that are needed are the contravariant components gij of the 
metric, and the Jacobian of the transformation J. These may be computed from gij using 
Eqns. (B8) and (B4) as needed, or stored, according to the relative cost of space and time 
for the computation. We adopt the latter philosophy for two-dimensional transformations, 
the former for three-dimensional. 

These methods have been implemented for Navier-Stokes simulations of incompressible 
flow in distorted two-dimensional geometries. Typically the simultions of the generalised 
equations take 50 to 90% longer than comparable simultions in Cartesian co-ordinates, 
and require 50% more storage space. The results of these simulations and of simulations in 
three-dimensional geometries will be reported elsewhere. Our intention is to extend the 
code to three dimensions when this is required. The three-dimensional calculations require 
more than twice as much computer storage space as the Cartesian case, and we expect a 
100 to 150% increase in the time required. Nevertheless, these increases are within 
reasonable bounds; in all cases the Connection coefficients are not computed or employed, 
and the transformation matrix elements are retained in backing storage for graphical 
output. 
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The equations used are summarised here, first for compressible flow: 

~,p + uq)ip + pJ-  '~i( Ju i) = 0, (41) 

Otu i= p - ' F ' -  gijOje + 2uJ~o) - 2vJ-~aj( Jw 'j) 

+O-'giJ[()~ + 2/t)OjO + OOj~.], (42) 

pcpOtT= - pcpuJOjT + kJ-  'Oj( Jg'Joir ) - pO + XO 2, (43) 

p = p ( p, T). (44) 

For incompressible flow: 

O~(Ju') = 0, (45) 

O,u~= p -1F ,_  gijOjp 4- 2uJ6o~ - 2~J-l~j(  JosiJ), (46) 

pce~tT= -pcpuJOjT + kJ -  a~j ( jgijOiT ) . (47) 

We now turn to a discussion of the best approach for computing the terms omitted 
from the above equations. 

10. The computation of strain 

We have not found any method of manipulating terms involving the contravariant 
components of the strain rate s ij (as opposed to its divergence) which allows their 
computation without the use of the connection coefficients. The equation defining the 
strain in general co-ordinates is (18c). However, it should be noted that the components of 
the connection occur once only in this equation owing to the symmetry of s ~j. The 
covariant components may also be computed, by 

sij= uj + Oju,)- (48) 

The "viscosity gradient" force, 

2p- lsiJ3jlx (49) 

we suggest, may best be found by recomputing F~ at each iteration (or time step), since it 
is possible to calculate the term using each of the eighteen independent components of F 
once only. 

It may be possible to compute the viscous dissipation, should this also be non-negligi- 
ble, in the same loop, so that each connection coefficient need only be found once. In a 
finite difference computation, a single recomputation of the eighteen components of F 
may not be too burdensome; in a spectral calculation, the use of the connection 
coefficients leads to a large number of additional Fourier (or other) transforms, and is 
expensive to implement. 
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11. Turbulent eddy viscosity 

One type of computation that always involves a spacially varying viscosity coefficient is 
the turbulence model. Most simple turbulence closure models, or the subgrid scale models 
of large-eddy simulations, use Boussinesq eddy-viscosity terms. The eddy viscosity may be 
derived in a very simple or in a sophisticated manner, but if it is to model the turbulence 
at all adequately it must fall to zero at solid boundaries, and be large where the 
(unresolved) turbulent transport is high. Only extremely simple types of turbulence can be 
modelled with a constant eddy viscosity [10]. Near walls, the gradients of eddy viscosity 
are frequently large. 

The conclusion that the methods given in this paper cannot be applied to Boussinesq 
turbulence models in general co-ordinates may nevertheless be premature. The general 
covariant form of the modelling term is as follows: 

2 p - l ( # e S i J ) . j  = 2p-l~teSiJj + 2p-1siJlte. j. (50) 

We point out that each half of the RHS of (50) is separately covariant, and that either 
could be included alone. If the viscosity gradient term is omitted, the result is a "local 
Boussinesq model": 

2~,~sl; = - 2~J- '%(J~oiJ).  (51) 

Unless the turbulence modelling is critical, we suggest this may be an adequate replace- 
ment for the more usual form (50). The omitted term is significant in boundary layers. In 
the case of large-eddy simulations [11,12,13], which are believed to be less model-depen- 
dent than time-average closures [14], a subgrid scale model of the form (51) may be as 
useful as (50). The form (51) implies that the acceleration due to the presence of 
(unresolved) turbulence is parallel to the molecular viscous force (assuming ~ to be 
constant), while (50) does not. We expect the magnitude of the turbulent momentum 
transfer to depend predominantly on the size of/x e, and not to be affected greatly by the 
presence of the viscosity gradient term, except near boundaries. Some additional tuning of 
the decrease of the subgrid-scale eddy viscosity in boundary layers may be needed to allow 
for the effect of the omitted term. 

Appendix A 

Notation 

D / D t  

Oi ~2 

o, 
F i 

specific heat 
transformation matrix elements 
material derivative 
partial derivative with respect to x ~ 
partial Laplacian 
partial derivative with respect to time 
driving force 
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g 

g i j  
J 
k 
P 
P 
s iJ  

t 
T 
U i 

13 i 
X i 
y i  

0 
X 

P 

P 
o iJ  

6o i j  

gravitation 
covariant metric tensor 
transformation Jacobian 
thermal conductivity 
pressure 
total pressure 
strain tensor 
time 
temperature 
generalised velocity, contravariant components 
Cartesian velocity components 
general co-ordinates 
Cartesian co-ordinates 
affine connection coefficients (Christoffel symbols) 
dilatation 
second coefficient of viscosity 
dynamic viscosity 
kinematic viscosity (first coefficient) 
density 
residual stress tensor 
stress tensor 
vorticity tensor 

Sub and Superscripts 
i, j ,  k, I and m take values 1, 2, 3. Summation over these values is implied wherever the sub 
or superscript is repeated in any term. 

Appendix B 

Relationships from General Tensor Calculus 

A co-ordinate transformation is assumed to be defined as a mapping of some convoluted 
region of physical three-dimensional space into some simpler space (for instance a 
cuboid). The only restrictions on the mapping are that it should be one-to-one and onto. 
The natural co-ordinates x of the simpler image space are then related to the Cartesian 
co-ordinates y of the original space by an invertible function: 

y' =y ' ( x  1, x:, x3), (i = 1 to 3). (B1) 

The transformation matrix elements are given by 

c)-'- Oy~/~x j (82) 

and their inverses by 

?[= Ox2/Oyi= ( c~i) - '  (B3) 
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The Jacobian of the transformation is 

J = Ic)l = Ig, j l  1/2. (B4)  

The relationship between a Cartesian vector v i in the object space and its counterpart 
general vector in the image space is simply 

v j = c /u  i. (B5) 

This is the transformation law for vectors that transform in the same way as the 
co-ordinate differentials dx i. The gradient of a scalar of necessity transforms in an inverse 
manner: 

Op/Oy  j =  ? ' j ~ p / b x ' =  c)O,p -~ . (B6) 

Vectors such as velocities, accelerations and forces transform as (B5), and are known as 
contravariant; those transforming like gradients (B6) are called covariant. The two types 
are distinguished by the position of the index, as indicated in (B5) and (B6). Higher-rank 
tensors may have all indices contravariant (up), all covariant (down), or be of mixed type. 

The metric of a transformation is defined by 

3 

gij = ~ ,  c~c~. (B7) 
k = l  

It may be shown that g~j transforms as a covariant tensor. Its inverse 

3 

gij  = ( g , j ) - i  = E c,c,-'-J (B8) 
k = l  

transforms as a contravariant tensor. Since the contraction (dot product) of one tensor 
with another is also a valid tensor, g/j is used to derive covariant components for 
contravariant vectors or tensors, while g'J reverses the process, thus: 

u i = gi ju  j, (B9) 

U j = g i J u i ,  (B10) 

o~j = g%~kj. (Bl l )  

Note, however, that only covariant and contravariant indices may be contracted together 
(summed over). The following quantity, for instance, is not a well-defined scalar: 

(B12) 

As shown in (B6), the gradient of a scalar quantity is a covariant vector. However, 
partial derivatives of higher rank tensors are not properly defined tensors, and in order to 
be able to write down equations in a co-ordinate independent form, a more general 
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concept, the covariant derivative, must be introduced. The covariant derivatives of tensors 
up to the second rank are as follows: 

ulj= Ojui + F]ku k, (B13a) 

u,,j = Oju,- FikjUk, (B13b) 

~ j  il i j  = ~ k s i J  + F ~ I s I j  _1_ l [ lS  , S ,k  

i __ i i 1 l i 

Si], k .~- ~kS i  j - -  r l i S l j  - -  P k j S i l  . I  

(B13c) 

(BX3d) 

(B13e) 

The quantities I'i k are the components of the affine connection, or connection coefficients, 
and are derived from the metric tensors: 

= W ' ( a i g j ,  + a, g i , -  a,g,j). (B,4) 

The connection coefficients are also known as Christoffel symbols of the second kind, 
written: 

From the examples above, it should be evident that in finding the covariant derivative of a 
tensor field the F's enter once for each index, with a positive sign for each contravariant 
index and with a negative sign for each covariant index. In Cartesian co-ordinates the 
components of the metric are those of a unit matrix Pij everywhere, the Fi~ vanish, and the 
covariant derivative becomes identical to the partial derivative. The F~, like the c~, are not 
tensor components, but geometric objects dependent on the co-ordinate system in use. 

Several important relationships are needed to understand the main text of this paper. 
In particular, the fact that the metric tensors commute with the covariant derivative 
operator 

( gijp ),j= gijp,j (B16) 

follows from Ricci's lemma: 

- - i j  (B17) g i j , k  - -  g , k  "~ O.  

This follows immediately from the general principle of tensor calculus, that properly 
formulated tensor equations are equally true (or equally false) in all co-ordinate systems. 
(B17) is clearly true in Cartesian co-ordinates. 

A second relationship of which we make much use is the following: 

F~= F~= J-l~)i J. (B18) 

The proof will be found in any standard text, [5]. 
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